
13. H. T. Kim and R. 8. Brodkey, "A kinetic approach for polymer solution data," AIChE J., 
14, No. i, 61-68 (1968). 

14. G.M. Bartenev and Z. G. Povarova, "Rheological properties of polyisobutylene--carbon 
black mixtures,"Kolloidn. Zh., 28, No. 2, 171-178 (1966). 

15. N. I. Seraya, L. V. Ivanova, and P. I. Zubov, "Thixotropic structure formation in acryl- 
ate complexes," Kolloidn. Zh., 28, No. 3, 450-457 (1966). 

BUBBLE MOTION UNDER THE ACTION OF A GRADIENT IN 

SURFACE-ACTIVE ~iATERIAL CONCENTRATION 

V. N. Mankevich UDC 532.72:541.8 

The problem of bubble motion under the action of a gradient in surface-active 
material concentration is considered. The bubble drift velocity is determined. 
The possibility of calculating bubble velocity with simultaneous action of tem- 
perature and concentration gradients is considered. 

The study of bubble and droplet motion in liquid and gaseous media is important in the 
solution of many practical technical problems (emulsion theory, solution of droplets, atomiz- 
ation of fuels, fuel placement in reservoirs, bubbling in air regeneration systems aboard 
spacecraft, etc.). 

In most cases the motive force is provided by gravitation, but there are also cases in 
which droplet or bubble motion is caused by nonuniform surface tension on a boundary [i, 2]. 
This nonuniformity can develop either because of a nonuniform temperature distribution [3-5], 
or because of a nonuniform concentration of surface-active material [6]. 

Below we will study bubble motion under the action of a constant gradient in surface- 
active material concentration, but in contrast to [6], where the simplifications made to the 
fundamental equations were purely intuitive, a more formal simplification procedure will be 
used, based on expansion in the small parameters of the problem. We will assume that mass 
forces are absent, and that evaporation of the surface-active material into the bubbles does 
not occur. The motion is steady-state and translational. We place the origin of the coor- 
dinate system at the center of the moving bubble. 

The distributions of velocity v, pressure p, and surface-active material concentration 
are defined by a system of equations 

av vp 
Ot q- ( W )  v = - -  - -  q -  r a y ,  V v = O, 

P (1) 

Oc_c_ -Jr w e  -= DoAc. 
at 

On the bubble surface at r =R L the equation for conservation of surface-active material 
has the form [2, 7] 

__of . _ _ 1  8 ( F v o s i n O ) - - D ~ - - I  0 ( sinO OF ) --_ D~--Oc I . 
Ot q- RsinO O0 R2sinO O0 O0 Or [~=R (2) 

Limiting ourselves to the case Re << i, Pe << i, we will estimate the order of magnitude 
of the terms of Eqs. (i), (2), transforming to dimensionless variables and choosing for the 
length scale the droplet radius R, for velocity Ida/dc[REc/~, for pressure [da/dc[Ec, and 
for concentration EcR. Performing this estimate, we find that in the zeroth approximation 
for small Re and Pe in Eq. (i) the inertial terms may be neglected, while in Eq. (2) (assum- 
ing also that Dv~Ds) the first two operators on the left-hand side may be dropped, these 
representing the change in surface concentration of the surface-active material with time 
and the convective transfer of the material along the surface. 
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Thus, in Eq. (2) for slow motion (small Pe s) we may neglect the convective term, while 
in [6] surface diffusion was neglected without sufficient justification. Moreover, the 
operator 3c/3r was replaced by the difference operator Ac/6, although the boundary layer 
scale ~ of the problem was undefined. Now, Eqs. (i), (2), again written in dimensioned 
variables, take on the form 

O--  VP + ray, V v - ~ O ,  DoAc=O,  
P 

ao @ D~R~ sin 0 Oc (3) 
Or r=R 

Integration of the last equation of Eq. (3) requires imposition of one more condition, 
e.g., at the point of influx: 

ar I = 0 (4) RaO Io=o 

This equation itself contains a new unknown F. Therefore, to transform Eq. (3) to a mathe- 
matically complete boundary problem, one more equation must be added. For this equation we 
may choose the expression for surface-active material flow to the surface, expressed in 
terms of the adsorption and desorption coefficients ~ and ~ [8]: 

Oo (1 - -  F (5) 

Here P~ is the maximum adsorption. 

Far from the bubble we consider the surface-active material adsorption gradient con- 
stant, while on the surface the usual kinematic and dynamic conditions are fulfilled: 

= o ,  = uocos0, 

O~ 1 OF ,=R = a~~ " ( 6 )  
~,o+ 0-7 R aT r=~ 

i 

In  the L a t t e r  equa t ion  we take ~rO~O ( n e g l e c t i n g  the v i s c o s i t y  o f  the gas) With conser -  
v a t i o n  of  t o t a l  gas volume in  the bubble ( i . e . ,  i n  the absence o f  phase t r a n s i t i o n s )  the 
t o t a l  fo rce  a c t i n g  on the bubble w i l l  be 

F ~= f ((Jrr c o s  0 - -  ( ; r0  sin 0) dslr= R = O. (7) 

In the  case  o f  a s p h e r i c a l  b u b b l e ,  in  p l a c e  o f  Eq. (7) we may c o n s i d e r  t h e  e q u i v a l e n t  
c o n d i t i o n  [1] 

2a / 

= o ; , /  , 
' ; "  + -#- 'I,=R (8) 

which expresses the equality of normal stresses. Since the gas pressure within the bubble 
po may be considered constant, and pressure measured with that value as a reference, in Eq. 

! 

(8) we may take ~rr =0. 

If the spherical form is lost during bubble motion, then to determine the new unknown 
r =R(0) both conditions (7) and (8) are required. This fact was not noted in [3, 4], which 
produced a false result for velocity of thermocapillary motion, in fact, for terms of order 
0[M2], where M is the Marangoni number, since in the zeroth approximation in M the bubble is 
spherical and Eqs. (7), (8) are equiyalent , while in the first approximation the properties 
of the functions obtained for the velocity from condition (8) prove to be such that condi- 
tion (7) is also fulfilled automatically for a spherical surface. This was shown by the 
fact that the function f1(0) in the expansion of r =R(0) in powers of M proved equal to 
zero. 

Equation (5) in nonlinear. Limiting ourselves to the main point of the problem, we 
will consider the conditions at which one can take 

f (9) 
--<<I 
f~ 
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Condition (9) is satisfied for dilute solutions. However, it also imposes a limit on the 
"surface-active material force" [7, 9]. It follows from the last relationship of Eq. (3) 

that 

D~ -- .D~F. ( 1 0 )  
R 

The equilfbrium values of F and c are related by the expression r =hc, where h is the 
"adsorption depth." Substituting the latter expression in Eq. (i0), we obtain the estimate 

D~ R F f 
--- << 1. ( 1 1 )  

Ds h P~ P~ 

Since it was assumed that Dv~Ds, then for R~h, i.e., for strong or moderate material 
activity, Eqs. (3), (9) are satisfied simultaneously. 

In the zeroth approximation in small values of the parameters Re and Pc, the solution 
of linear problem (3)-(7) can be obtained by the standard method, with one of conditions (7) 
or (8) being used in the zeroth approximation, as was noted above. After calculations, we 
obtain 

3 E~R s cos O, 
vr = - -  3~~-- dF 

a E~R s - - s i n O ,  
vo : - -  6F~ ..... dF 

p = 0, F = I 'o + sE~ cos 0, 

c = co -t- 1 -]- - f~  r Ecr cos 0, 

where the following notation is used: 

s= 

A = 

3 D,  R313 

2aR~D~ - -  D~ (4D~ - -  2R13) ' 

Do (czR z - -  2D~) - -  2DsR~ 

D~ (aR z - -  2D~) + D~R~ 

Fo, co are the surface-active material concentrations corresponding to the instantaneous 
position of the bubble center. As in the thermocapillary problem, the bubble moves in the 
direction of the material gradient. The bubble drift velocity is given by 

U~ E~ do 
- s-- (14) 

3~ dE 

A posteriori verification of solution (12), found with neglect of inertial forces [i0], 
shows that the problem is solved in the Stokes approximation. We note that the expression 
for U c is analogous in form to the expression for the zeroth approximation of thermocapillary 
drift velocity, obtained in [3, 4]. 

In the presence of both a temperature gradient and a concentration gradient, the total 
effect of their action on drift velocity can be determined. In fact, in view of the linear- 
ity of the problem, the total drift velocity will be equal to the sum of the quantities Uc, 
as given by Eq. (14), and UT, calculated in [4]. 

An interesting physical situation can appear when thermodiffusion is considered. It is 
well known that a concentration gradient can develop in a solution with initially uniform 
distribution of material when a temperature gradient is imposed. The total diffusion flux 
is then given by [ii] 

7 = - -  pc (1 - -  c) Dr grad T - -  PDo grad c. (15  ) 

I f  ~ = o ( F ,  T ) ,  t h e n  t h e  c h a n g e  i n  s u r f a c e  t e n s i o n  h a s  t h e  f o r m  (0o) 
w =  - ~  v r +  vT. (16) 

I t  i s  o b v i o u s  t h a t  ( 3 o / 3 F ) V F  = ( 3 ~ / 3 c ) V c .  T h e n  Eq.  ( 1 6 )  may b e  w r i t t e n :  
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(17) 

In the stationary state net diffusion flux is absent, and from Eq. (15) we obtain 

Ac-- c(1--c) DT vT" (18) 
Do 

Subs t i tu t ing  Eq. (18) in Eq. (17), we have f i n a l l y  

( Oa c(1--c)DT Oa ) v T .  (19) 
V ~ . . . .  OT Dv Oc 

If both terms in parentheses are of the same order, braking of the thermocapillary drift 
of the bubble by surface-active materials can be expected. For example, for alcohols [12], 
the temperature coefficient is equal to 3~/3T~0.03 erg/cm=.deg K, c(3~/3c)~i0 erg/cm2; the 
Sore coefficient DT/D v can reach a magnitude of 10 -3 deg -~ [ll]. 

Thus, both terms in Eq. (19) prove to be of the same order, and a situation is possible 
in which a bubble becomes completely frozen by the surface-active material gradient developed. 

NOTATION 

t, time; v, velocity; T, temperature; Uc, drift velocity; p, pressure; c, volume con- 
centration of surface active material; Dr, Ds, DT, volume, surface, and thermodiffusion 
coefficients; p, ~, dynamic and kinematic viscosity coefficients; p, density; F, F~, surface 
concentration and maximum adsorption of surface-active material; R, bubble radius; r, e, 
coordinates; ~, B, desorption and adsorption coefficients; Oik, stress tensor components; 
o, surface tension; F, total force; Pe, Re, dimensionless parameters of problem; Ec, con- 
stant surface-active material concentration gradient; A, s, constant parameters; I, total 
diffusion flow of the surface-active material. 
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